30 research outputs found

    Is mereology empirical? Composition for fermions

    Get PDF
    How best to think about quantum systems under permutation invariance is a question that has received a great deal of attention in the literature. But very little attention has been paid to taking seriously the proposal that permutation invariance reflects a representational redundancy in the formalism. Under such a proposal, it is far from obvious how a constituent quantum system is represented. Consequently, it is also far from obvious how quantum systems compose to form assemblies, i.e. what is the formal structure of their relations of parthood, overlap and fusion. In this paper, I explore one proposal for the case of fermions and their assemblies. According to this proposal, fermionic assemblies which are not entangled -- in some heterodox, but natural sense of 'entangled' -- provide a prima facie counterexample to classical mereology. This result is puzzling; but, I argue, no more intolerable than any other available interpretative option.Comment: 24 pages, 1 figur

    Qualitative individuation in permutation-invariant quantum mechanics

    Get PDF
    In this article I expound an understanding of the quantum mechanics of so-called "indistinguishable" systems in which permutation invariance is taken as a symmetry of a special kind, namely the result of representational redundancy. This understanding has heterodox consequences for the understanding of the states of constituent systems in an assembly and for the notion of entanglement. It corrects widespread misconceptions about the inter-theoretic relations between quantum mechanics and both classical particle mechanics and quantum field theory. The most striking of the heterodox consequences are: (i) that fermionic states ought not always to be considered entangled; (ii) it is possible for two fermions or two bosons to be discerned using purely monadic quantities; and that (iii) fermions (but not bosons) may always be so discerned.Comment: 58 pages, 5 figure

    Symmetries and Paraparticles as a Motivation for Structuralism

    Get PDF
    This paper develops an analogy proposed by Stachel between general relativity (GR) and quantum mechanics (QM) as regards permutation invariance. Our main idea is to overcome Pooley's criticism of the analogy by appeal to paraparticles. In GR the equations are (the solution space is) invariant under diffeomorphisms permuting spacetime points. Similarly, in QM the equations are invariant under particle permutations. Stachel argued that this feature - a theory's "not caring which point, or particle, is which" - supported a structuralist ontology. Pooley criticizes this analogy: in QM the (anti-)symmetrization of fermions and bosons implies that each individual state (solution) is fixed by each permutation, while in GR a diffeomorphism yields in general a distinct, albeit isomorphic, solution. We define various versions of structuralism, and go on to formulate Stachel's and Pooley's positions, admittedly in our own terms. We then reply to Pooley. Though he is right about fermions and bosons, QM equally allows more general types of symmetry, in which states (vectors, rays or density operators) are not fixed by all permutations (called 'paraparticle states'). Thus Stachel's analogy is revived

    Symmetries and Paraparticles as a Motivation for Structuralism

    Get PDF
    This paper develops an analogy proposed by Stachel between general relativity (GR) and quantum mechanics (QM) as regards permutation invariance. Our main idea is to overcome Pooley's criticism of the analogy by appeal to paraparticles. In GR the equations are (the solution space is) invariant under diffeomorphisms permuting spacetime points. Similarly, in QM the equations are invariant under particle permutations. Stachel argued that this feature--a theory's `not caring which point, or particle, is which'--supported a structuralist ontology. Pooley criticizes this analogy: in QM the (anti-)symmetrization of fermions and bosons implies that each individual state (solution) is fixed by each permutation, while in GR a diffeomorphism yields in general a distinct, albeit isomorphic, solution. We define various versions of structuralism, and go on to formulate Stachel's and Pooley's positions, admittedly in our own terms. We then reply to Pooley. Though he is right about fermions and bosons, QM equally allows more general types of symmetry, in which states (vectors, rays or density operators) are not fixed by all permutations (called `paraparticle states'). Thus Stachel's analogy is revived.Comment: 45 pages, Latex, 3 Figures; forthcoming in British Journal for the Philosophy of Scienc

    On Kinds of Indiscernibility in Logic and Metaphysics

    Full text link
    Using the Hilbert-Bernays account as a spring-board, we first define four ways in which two objects can be discerned from one another, using the non-logical vocabulary of the language concerned. (These definitions are based on definitions made by Quine and Saunders.) Because of our use of the Hilbert-Bernays account, these definitions are in terms of the syntax of the language. But we also relate our definitions to the idea of permutations on the domain of quantification, and their being symmetries. These relations turn out to be subtle---some natural conjectures about them are false. We will see in particular that the idea of symmetry meshes with a species of indiscernibility that we will call `absolute indiscernibility'. We then report all the logical implications between our four kinds of discernibility. We use these four kinds as a resource for stating four metaphysical theses about identity. Three of these theses articulate two traditional philosophical themes: viz. the principle of the identity of indiscernibles (which will come in two versions), and haecceitism. The fourth is recent. Its most notable feature is that it makes diversity (i.e. non-identity) weaker than what we will call individuality (being an individual): two objects can be distinct but not individuals. For this reason, it has been advocated both for quantum particles and for spacetime points. Finally, we locate this fourth metaphysical thesis in a broader position, which we call structuralism. We conclude with a discussion of the semantics suitable for a structuralist, with particular reference to physical theories as well as elementary model theory.Comment: 55 pages, 21 figures. Forthcoming, after an Appendectomy, in the British Journal for the Philosophy of Scienc

    Structural basis of the leukocyte integrin Mac-1 I-domain interactions with the platelet glycoprotein Ib

    Get PDF
    Cell-surface receptor interactions between leukocyte integrin macrophage-1 antigen (Mac-1, also known as CR3, aMb2, CD11b/CD18) and platelet glycoprotein Iba (GPIba) are critical to vascular in?ammation. To de?ne the key residues at the binding interface, we used nuclear magnetic resonance (NMR) to assign the spectra of the mouse Mac-1 I-domain and mapped the residues contacting the mouse GPIba N-terminal domain (GPIbaN) to the locality of the integrin metal ion-dependant adhesion site (MIDAS) surface. We next determined the crystal structures of the mouse GPIbaN and Mac-1 I-domain to 2 ?A and 2.5 ?A resolution, respectively. The mouse Mac-1 I-domain crystal structure reveals an active conformation that is stabilized by a crystal contact from the a7-helix with a glutamatesidechaincompletingtheoctahedralcoordinationsphereoftheMIDASMg21 ion. The amino acid sequence of the a7-helix and disposition of the glutamic acid matches the C-terminal capping region a-helix of GPIba effectively acting as a ligand mimetic. Using these crystal structures in combination with NMR measurements and docking analysis, we developed a model whereby an acidic residue from the GPIba leucine-rich repeat (LRR) capping a-helix coordinates directly to the Mac-1 MIDAS Mg21 ion. The Mac-1:GPIbaN complex involves additional interactions consolidated by an elongated pocket ?anking the GPIbaN LRR capping a-helix. The GPIbaN a-helix has an HxxxE motif, which is equivalent by homology to RxxxD from the human GPIbaN. Subsequent mutagenesis of residues at this interface, coupled with surface plasmon resonance studies, con?rmed the importance of GPIbaN residues H218, E222, and the Mac-1 MIDAS residue T209 to formation of the complex
    corecore